Updated Feb 20, 2026
Tech Trends
AI-aggregated emerging technology news from top sources. Updated daily via automated Python scraper + GitHub Actions.
Executive Summary
Category Highlights
MMCAformer: Macro-Micro Cross-Attention Transformer for Traffic Speed Prediction with Microscopic Connected Vehicle Driving Behavior
arXiv:2602.16730v1 Announce Type: new Abstract: Accurate speed prediction is crucial for proactive traffic management to enhance traffic efficiency and safety. Existing studies have primarily relied on aggregated, macroscopic traffic flow data to predict future traffic trends, whereas road traffic
A Few-Shot LLM Framework for Extreme Day Classification in Electricity Markets
arXiv:2602.16735v1 Announce Type: new Abstract: This paper proposes a few-shot classification framework based on Large Language Models (LLMs) to predict whether the next day will have spikes in real-time electricity prices. The approach aggregates system state information, including electricity dem
AIdentifyAGE Ontology for Decision Support in Forensic Dental Age Assessment
arXiv:2602.16714v1 Announce Type: new Abstract: Age assessment is crucial in forensic and judicial decision-making, particularly in cases involving undocumented individuals and unaccompanied minors, where legal thresholds determine access to protection, healthcare, and judicial procedures. Dental a
Retrieval Augmented (Knowledge Graph), and Large Language Model-Driven Design Structure Matrix (DSM) Generation of Cyber-Physical Systems
arXiv:2602.16715v1 Announce Type: new Abstract: We explore the potential of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG), and Graph-based RAG (GraphRAG) for generating Design Structure Matrices (DSMs). We test these methods on two distinct use cases -- a power screwdriver and
Train AI models with Unsloth and Hugging Face Jobs for FREE
Train AI models with Unsloth and Hugging Face Jobs for FREE
「データ不足」の壁を越える:合成ペルソナが日本のAI開発を加速
「データ不足」の壁を越える:合成ペルソナが日本のAI開発を加速
A Koopman-Bayesian Framework for High-Fidelity, Perceptually Optimized Haptic Surgical Simulation
arXiv:2602.15834v1 Announce Type: new Abstract: We introduce a unified framework that combines nonlinear dynamics, perceptual psychophysics and high frequency haptic rendering to enhance realism in surgical simulation. The interaction of the surgical device with soft tissue is elevated to an augmen
Towards Efficient Constraint Handling in Neural Solvers for Routing Problems
arXiv:2602.16012v1 Announce Type: new Abstract: Neural solvers have achieved impressive progress in addressing simple routing problems, particularly excelling in computational efficiency. However, their advantages under complex constraints remain nascent, for which current constraint-handling schem
Optimization Instability in Autonomous Agentic Workflows for Clinical Symptom Detection
arXiv:2602.16037v1 Announce Type: new Abstract: Autonomous agentic workflows that iteratively refine their own behavior hold considerable promise, yet their failure modes remain poorly characterized. We investigate optimization instability, a phenomenon in which continued autonomous improvement par
Memes-as-Replies: Can Models Select Humorous Manga Panel Responses?
arXiv:2602.15842v1 Announce Type: new Abstract: Memes are a popular element of modern web communication, used not only as static artifacts but also as interactive replies within conversations. While computational research has focused on analyzing the intrinsic properties of memes, the dynamic and c
AI Impact Summit 2026
A look at the partnerships and investments Google announced at the AI Impact Summit 2026.
“No technology has me dreaming bigger than AI”
a stylized design resembling the Ashoka Chakra with colorful network lines and text reading "भारत 2026 INDIA." A vertical line separates it from the Google logo on the right, all set against a light blue gradient background with a faint grid pattern.
IBM and UC Berkeley Diagnose Why Enterprise Agents Fail Using IT-Bench and MAST
IBM and UC Berkeley Diagnose Why Enterprise Agents Fail Using IT-Bench and MAST
Hybrid Feature Learning with Time Series Embeddings for Equipment Anomaly Prediction
arXiv:2602.15089v1 Announce Type: new Abstract: In predictive maintenance of equipment, deep learning-based time series anomaly detection has garnered significant attention; however, pure deep learning approaches often fail to achieve sufficient accuracy on real-world data. This study proposes a hy
Attention-gated U-Net model for semantic segmentation of brain tumors and feature extraction for survival prognosis
arXiv:2602.15067v1 Announce Type: new Abstract: Gliomas, among the most common primary brain tumors, vary widely in aggressiveness, prognosis, and histology, making treatment challenging due to complex and time-intensive surgical interventions. This study presents an Attention-Gated Recurrent Resid
Near-Optimal Sample Complexity for Online Constrained MDPs
arXiv:2602.15076v1 Announce Type: new Abstract: Safety is a fundamental challenge in reinforcement learning (RL), particularly in real-world applications such as autonomous driving, robotics, and healthcare. To address this, Constrained Markov Decision Processes (CMDPs) are commonly used to enforce
ResearchGym: Evaluating Language Model Agents on Real-World AI Research
arXiv:2602.15112v1 Announce Type: new Abstract: We introduce ResearchGym, a benchmark and execution environment for evaluating AI agents on end-to-end research. To instantiate this, we repurpose five oral and spotlight papers from ICML, ICLR, and ACL. From each paper's repository, we preserve the d
One-Shot Any Web App with Gradio's gr.HTML
One-Shot Any Web App with Gradio's gr.HTML
NVIDIA Nemotron 2 Nano 9B Japanese: 日本のソブリンAIを支える最先端小規模言語モデル
NVIDIA Nemotron 2 Nano 9B Japanese: 日本のソブリンAIを支える最先端小規模言語モデル
Our 2026 Responsible AI Progress Report
an illustration of blue and white cubes
Agentic AI for Commercial Insurance Underwriting with Adversarial Self-Critique
arXiv:2602.13213v1 Announce Type: new Abstract: Commercial insurance underwriting is a labor-intensive process that requires manual review of extensive documentation to assess risk and determine policy pricing. While AI offers substantial efficiency improvements, existing solutions lack comprehensi
When to Think Fast and Slow? AMOR: Entropy-Based Metacognitive Gate for Dynamic SSM-Attention Switching
arXiv:2602.13215v1 Announce Type: new Abstract: Transformers allocate uniform computation to every position, regardless of difficulty. State Space Models (SSMs) offer efficient alternatives but struggle with precise information retrieval over a long horizon. Inspired by dual-process theories of cog
VeRA: Verified Reasoning Data Augmentation at Scale
arXiv:2602.13217v1 Announce Type: new Abstract: The main issue with most evaluation schemes today is their "static" nature: the same problems are reused repeatedly, allowing for memorization, format exploitation, and eventual saturation. To measure genuine AI progress, we need evaluation that is ro
Scaling the Scaling Logic: Agentic Meta-Synthesis of Logic Reasoning
arXiv:2602.13218v1 Announce Type: new Abstract: Scaling verifiable training signals remains a key bottleneck for Reinforcement Learning from Verifiable Rewards (RLVR). Logical reasoning is a natural substrate: constraints are formal and answers are programmatically checkable. However, prior synthes
Exploring the Performance of ML/DL Architectures on the MNIST-1D Dataset
arXiv:2602.13348v1 Announce Type: new Abstract: Small datasets like MNIST have historically been instrumental in advancing machine learning research by providing a controlled environment for rapid experimentation and model evaluation. However, their simplicity often limits their utility for disting
The Speed-up Factor: A Quantitative Multi-Iteration Active Learning Performance Metric
arXiv:2602.13359v1 Announce Type: new Abstract: Machine learning models excel with abundant annotated data, but annotation is often costly and time-intensive. Active learning (AL) aims to improve the performance-to-annotation ratio by using query methods (QMs) to iteratively select the most informa
Accelerated Discovery of Cryoprotectant Cocktails via Multi-Objective Bayesian Optimization
arXiv:2602.13398v1 Announce Type: new Abstract: Designing cryoprotectant agent (CPA) cocktails for vitrification is challenging because formulations must be concentrated enough to suppress ice formation yet non-toxic enough to preserve cell viability. This tradeoff creates a large, multi-objective
BotzoneBench: Scalable LLM Evaluation via Graded AI Anchors
arXiv:2602.13214v1 Announce Type: new Abstract: Large Language Models (LLMs) are increasingly deployed in interactive environments requiring strategic decision-making, yet systematic evaluation of these capabilities remains challenging. Existing benchmarks for LLMs primarily assess static reasoning
Directional Concentration Uncertainty: A representational approach to uncertainty quantification for generative models
arXiv:2602.13264v1 Announce Type: new Abstract: In the critical task of making generative models trustworthy and robust, methods for Uncertainty Quantification (UQ) have begun to show encouraging potential. However, many of these methods rely on rigid heuristics that fail to generalize across tasks
BLUEPRINT Rebuilding a Legacy: Multimodal Retrieval for Complex Engineering Drawings and Documents
arXiv:2602.13345v1 Announce Type: new Abstract: Decades of engineering drawings and technical records remain locked in legacy archives with inconsistent or missing metadata, making retrieval difficult and often manual. We present Blueprint, a layout-aware multimodal retrieval system designed for la
A Theoretical Framework for Adaptive Utility-Weighted Benchmarking
arXiv:2602.12356v1 Announce Type: new Abstract: Benchmarking has long served as a foundational practice in machine learning and, increasingly, in modern AI systems such as large language models, where shared tasks, metrics, and leaderboards offer a common basis for measuring progress and comparing
Intent-Driven Smart Manufacturing Integrating Knowledge Graphs and Large Language Models
arXiv:2602.12419v1 Announce Type: new Abstract: The increasing complexity of smart manufacturing environments demands interfaces that can translate high-level human intents into machine-executable actions. This paper presents a unified framework that integrates instruction-tuned Large Language Mode
Evolving Beyond Snapshots: Harmonizing Structure and Sequence via Entity State Tuning for Temporal Knowledge Graph Forecasting
arXiv:2602.12389v1 Announce Type: new Abstract: Temporal knowledge graph (TKG) forecasting requires predicting future facts by jointly modeling structural dependencies within each snapshot and temporal evolution across snapshots. However, most existing methods are stateless: they recompute entity r
GT-HarmBench: Benchmarking AI Safety Risks Through the Lens of Game Theory
arXiv:2602.12316v1 Announce Type: new Abstract: Frontier AI systems are increasingly capable and deployed in high-stakes multi-agent environments. However, existing AI safety benchmarks largely evaluate single agents, leaving multi-agent risks such as coordination failure and conflict poorly unders
Intrinsic Credit Assignment for Long Horizon Interaction
arXiv:2602.12342v1 Announce Type: new Abstract: How can we train agents to navigate uncertainty over long horizons? In this work, we propose {\Delta}Belief-RL, which leverages a language model's own intrinsic beliefs to reward intermediate progress. Our method utilizes the change in the probability
Wireless TokenCom: RL-Based Tokenizer Agreement for Multi-User Wireless Token Communications
arXiv:2602.12338v1 Announce Type: new Abstract: Token Communications (TokenCom) has recently emerged as an effective new paradigm, where tokens are the unified units of multimodal communications and computations, enabling efficient digital semantic- and goal-oriented communications in future wirele
The Appeal and Reality of Recycling LoRAs with Adaptive Merging
arXiv:2602.12323v1 Announce Type: new Abstract: The widespread availability of fine-tuned LoRA modules for open pre-trained models has led to an interest in methods that can adaptively merge LoRAs to improve performance. These methods typically include some way of selecting LoRAs from a pool and tu
Abstractive Red-Teaming of Language Model Character
arXiv:2602.12318v1 Announce Type: new Abstract: We want language model assistants to conform to a character specification, which asserts how the model should act across diverse user interactions. While models typically follow these character specifications, they can occasionally violate them in lar
OptiML: An End-to-End Framework for Program Synthesis and CUDA Kernel Optimization
arXiv:2602.12305v1 Announce Type: new Abstract: Generating high-performance CUDA kernels remains challenging due to the need to navigate a combinatorial space of low-level transformations under noisy and expensive hardware feedback. Although large language models can synthesize functionally correct
Scaling Web Agent Training through Automatic Data Generation and Fine-grained Evaluation
arXiv:2602.12544v1 Announce Type: new Abstract: We present a scalable pipeline for automatically generating high-quality training data for web agents. In particular, a major challenge in identifying high-quality training instances is trajectory evaluation - quantifying how much progress was made to
Custom Kernels for All from Codex and Claude
Custom Kernels for All from Codex and Claude
Gemini 3 Deep Think: Advancing science, research and engineering
Gemini 3 Deep Think logo
Peter's AI Agents
Portfolio · Tech · DoD Policy · Notes
Agent Hub